

Programmable Digital AC Meter Installation \& Operating Instructions

Model 262-DGU-1A / 1V Model 262-DGU-3A / 3V Model 244-DGU-1A / 1V Model 244-DGU-3A / 3V

Size: $48 \times 96 m m$

Size: $96 \times 96 m m$

Crompton DGU - AC Digital Panel Meter PROGRAMMABLE DPM V/A

AC Volt Meter (3Ф) : DGU - 3V
AC Ammeter (3Ф) : DGU - 3A
AC Volt Meter (1Ф) : DGU-1V
AC Ammeter (1Ф) : DGU - 1A

Installation \& Operating Instructions

Section Contents

1. Introduction
2. Measurement Reading Screens
3.

Programming
3.1 Set Up Screens
4.

Installation
4.1 EMC Installation Requirements
4.2 Case Dimensions and Panel Cut-out
4.3 Wiring
4.4 Auxiliary Supply
4.5 Fusing
4.6 Earth / Ground Connections
5.
6. Specifications

Connection Diagrams for DGU-3V

Connection Diagrams for DGU-3A Connection Diagrams for DGU-1V Connection Diagrams for DGU-1A
5.1
5.2
5.3
5.4

Connection Diagrams

Available Models :

2.DGU-3A

3.DGU-1V

1. Introduction

The DGU Series is a panel mounted $96 \times 96 \mathrm{~mm}$ \& $48 \times 96 \mathrm{~mm}$ Digital Panel Meter for the measurement of AC Voltage and current in three phase or single phase systems.
The instrument integrates accurate measurement technology.
The parameters are displayed with Ultra high brightness LED display with 14 mm Digit height which enables to take readings from long distance. Programmable DPM can be configured and Programmed at site for the following :
PT Primary, CT Primary, PT Secondary, CT Secondary. The front panel has two push buttons for the user to interface to scroll through the available parameters the two keys has function as follows:

1. $\boldsymbol{7}$: Scrolls through parameter in upward sequence. Display sequence DGU 3 V : L1 voltage,L2 voltage, L3 voltage, L1-L2 voltage, L2-L3 voltage, L3-L1 Voltage, System voltage and back to L1 voltage. Display sequence DGU 3A : L1 current, L2 current L3 current, System current and back to L1 current.
2. \square :Scrolls the parameters in Reverse of above sequence.

TABLE 1: Parameters Displayed with DGU 3V model

Measured Parameters	Unit of measurement
L1 Voltage	volt
L2 Voltage	volt
L3 Voltage	volt
L1-L2 Voltage	volt
L2-L3 Voltage	volt
L3-L1 Voltage	volt
System Voltage	volt

TABLE 3: Parameters Displayed with DGU 1V model

Measured Parameters	Unit of measurement
L1 Voltage	volt

TABLE 4: Parameters Displayed with DGU 1A models

Measured Parameters	Unit of measurement
L1 Current	Ampere

2. Measurement Reading Screen

In normal operation the user is presented with the measurement reading screens. These screens may be scrolled through one at a time in incremental order by pressing the π key and in decrementing order by pressing key.

A. Display Screens of DGU 3V Models :

Screen 1 : Voltage L1

Screen 2 : System Voltage
(value displayed after "Sys" flashing on Display)

B. Screens of DGU 3A Models :

Screen 1 : L1 Current
Screen 2 : System Current (Value displayed after "Sys" flashing on Display)

C. Display Screens of DGU 1V/1A Models :

3. Programming

The following sections comprise step by step procedures for configuring the DGU 3V/3A and DGU 1V/1A for individual user requirements. To access the set-up screens press and hold the "今 " and " \checkmark ", Keys Simultaneously.
This will take the User into the Sys Type Screen (in case of 3V/3A) Followed by "Sys" on Display (Section 3.1) or directly into the CT/PT Primary Screen (in case of A / V respectively).

3.1 Set Up Screens
 3.1.1. System type(for DGU 3V/3A)

This screen is used to set the system type. System type " 3 " for 3 phase 3 wire \& " 4 " for 3 phase 4 wire system. Pressing the " Ω, down" key accepts the present value and advances to the "PT primary (in case of 3 V) or CT primary (in case of 3A) value Edit" menu (see section 3.1.2 for PT primary and 3.1.3. for CT primary). Pressing the "仓up" key will enter to the system type selection menu and scroll the values through will enter values available. Pressing the " ת down" key advances to the system type confirmation menu.
Note: In Case 3P3W accuracy of 12 is 2% and Sys current is 1%.

5

System Type Confirmation

This screen will only appear following the edit of system type． If system type is to be edit again，
Pressing the＂ u up＂key will scroll between＂3＂for 3 phase 3 Wire and＂ 4 ＂for 3 Phase 4 Wire．
Pressing the＂\measuredangle down＂key sets the displayed value and will advance to＂Potential Transformer Primary Value Edit＂ menu．（See section 3．1．2 for 3 V \＆1V）and＂Current transformer primary value（see section 3．1．3 for 3A \＆1A） 3．1．2．Potential Transformer Primary Value（for 3V \＆1V） This screen displays＂PtPr＂message followed by previously set PT primary value on display． For DGU 3 V （3 phase）user can set PT primary value from 100V LL to 999 kV LL \＆for DGU 1 V （single phase），user can set PT primary from $57.5(\mathrm{VLN})$ to 999 （kVLN）．

Pressing the＂\cap＂，key accepts the present value and advances to the＂PT Secondary＂selection menu（See Section 3．1．4）for DGU－3V and 1V．
Pressing the＂乌＂key will enter the＂Potential transformer Primary Value Multiplier Selection．
DGU 3V：Initially the＂multiplier must be selected．Pressing the＂ ＂＂Key will move the decimal point position to the right side and show \＃\＃\＃．，after which it will again Shift to \＃．\＃\＃，\＃\＃．\＃， \＃\＃\＃．with Annunciation of＂$x 1000$＂，which indicates the value in kV．
DGU－1V：Initially the＂multiplier must be selected．Pressing the＂仓＂Key will move the decimal point position to the right Side and show \＃\＃．\＃\＃，\＃\＃\＃．\＃after which it will again shift to \＃．\＃\＃\＃，\＃\＃．\＃\＃，\＃\＃\＃．\＃With annunciation of＂x1000＂，which indicates the value in kV． Pressing the＂＂＂key accepts the present multiplier（Decimal Point position）and advances to the＂PT Primary value Edit＂menu with decimal flashing to indicate cursor position．

PT Primary value Edit

Pressing the＂仓＂key will scroll the value of the most significant digit．
Pressing the＂δ＂key accepts the present value at the cursor position and advances the cursor to the next Less significant digit．When the least significant digit has been set，

pressing the " Ω " key will advance to the "Potential transformer Primary Value Confirmation" screen. For DGU 3V: When PT primary is set < 100 VLL then meter shows"Err" \& again goes to PT primary edit stage with the minimum PT primary value i.e. 100 VLL DGU -1V: When PT primary is set less than 57.5 VLN then meter shows "Err" \& again goes to PT primary edit stage with the minimum PT primary value i.e. 57.5 VLN .

Note : the flashing decimal point indicates the cursor position, a steady decimal point will be present to identify the scaling of the number until the cursor position coincides with the steady decimal point position. At this stage the decimal point will
 be flashing.

Potential Transformer Primary Value Confirmation

This screen will only appear following an edit of the Potential Transformer Primary Value If the set value is to be corrected, pressing the " 仓" key will return to the "Potential Transformer Primary Value Edit" stage. Pressing the " ζ " key sets the value and then advance to the "PT secondary screen" Selection menu.
Note: For DGU $1 \mathrm{~V}(600 \mathrm{VLN}$) it will exit from set up menu.

3.1.3 Current Transformer Primary Value (for DGU 3A \& 1A)

This screen displays "CtPr" message followed by previously set CT primary value on display. This screen enables user to set CT primary from 1A to 999kA.

Pressing the " ζ " key accepts the present value and advances to the "CT Secondary Selection screen"
Pressing the "仓 " key will shift decimal point position to right side and show \#.\#\#, \#\#.\#, \#\#\#. , after which it will again shift to \#. \#\#, \#\#.\#, \#\#\#. with Annunciation of "x1000", It indicates the value in kA .
Pressing the " ζ " key accepts the decimal point position and enters into Current Transformer Primary value edit.

Current Transformer Primary value Edit

 Pressing the "仓" key will scroll the value of the most significant digit. Pressing the " ζ " key accepts the present value at the cursor position and advances the cursor to the next Less significant digit. When the least significant digit has been set, pressing the " \square " key will advance to the "Current transformer Primary Value confirmation" screen. When CT primary is set less than 1A then meter shows "Err" and CT primary is set to 1A.minimum CT primary value that user can set is 1 A .
Note : the flashing decimal point indicates the cursor position, a steady decimal point will be present to identify the scaling of the number until the cursor position coincides with the steady decimal point position. At this stage the decimal point will be flashing.

Current Transformer Primary Value Confirmation

This screen will only appear following an edit of the Current Transformer Primary Value.
If the set value is to be corrected, pressing the "仓" key will return to the "Current Transformer Primary Value Edit" stage. Pressing the " Ω " key sets the value and then advance to the "CT secondary" Selection menu.

3.1.4. Potential Transformer Secondary Value (for 3V \& 1V)

This screen displays "Pt-S" message followed by previously set PT secondary value on display. For DGU 3 V (3 phase) user can set PT secondary value from 100 V L to 500 V LL \& for DGU 1V (single phase), user can set PT primary from $57.5(\mathrm{VLN})$ to 300 VLn .

Pressing the＂Ω＂key accepts the present value and advances to the＂Auto scroll＂selection menu（See Section 3．1．6）for 3V． In case of DGU 1 V it will exit from set up menu． Pressing the＂仓＂key will enter the＂Potential transformer Secondary Value Most significant digit Selection．
Pressing the＂仓＂key will scroll the value of the most significant digit． Pressing the＂ζ＂key accepts the present value at the cursor position and advances the cursor to the next Less significant digit． When the least significant digit has been set，pressing the＂ζ＂key will advance to the ＂Potential transformer secondary value confirmation＂screen．For DGU 3 V minimum PT secondary can set is $100 \mathrm{~V}(\mathrm{~L}-\mathrm{L})$ ．For DGU 1 V If Pt secondary is less than $57.5 \mathrm{~V}(\mathrm{~L}-\mathrm{N})$ then meter shows ＂Err＂and PT secondary is set to $57.5 \mathrm{~V}(\mathrm{~L}-\mathrm{N})$ ．

Note：For DGU 1V decimal point is fixed at third digit position．
Potential Transformer Secondary Value Confirmation
This screen will only appear following an edit of the Potential Transformer Secondary Value．
If the set value is to be corrected，pressing the＂仓＂key will return to the＂Potential Transformer Secondary Value Edit＂stage． Pressing the＂ζ＂key sets the value and then advance to the ＂Auto scroll＂Selection menu in case of DGU -3 V and in case of DGU－1V it will exit from set up menu．

3．1．5 Current Transformer Secondary Value（for 3A \＆A）

This screen is used to set Current transformer secondary value．＂ 1 ＂for CT secondary 1 A and＂ 5 ＂for CT secondary 5 A ． pressing＂ك＂down key accepts the present value and advances to the Auto Scroll option in case of DGU－3A and for DGU -1 A it will exit from setup and goes to measurement screen．

Current transformer Secondary confirmation screen: When "کऽ" down key is pressed , set message screen will appear, if again down key is pressed value is accepted. If CT secondary value is to be edit once again,pressing "乌" up key user can scroll between "5" for CT secondary 5A and "1" for CT secondary 1 A .
Pressing "תا" key will accept displayed value and advance to auto scroll selection menu in case of DGU 3A and it will exit from set up in case of DGU 1A and goes to measurement screen.

3.1.6 Selection of Auto Scrolling or fixed Screen (only for 3V/3A)

Pressing the " ζ " key will accept the display value and exit from set up and enter into measurement mode.
Pressing the "仓" key will scroll between "Yes" and "No".
Select "Yes" for Auto scrolling of parameter display and Select "No" for fixed display screen.
Pressing the " ζ " key will enter into Screen selection Confirmation screen.

Auto / Fixed Screen Confirmation
Pressing the " Ω " key set the selected option and Exit set up with entering into measurement mode.
Pressing the " \uparrow " key re-enter Screen selection menu.

4. Installation

Mounting of DGU is featured with easy "Clip- in" mounting. Push the meter in panel slot (size $92 \times 92 \mathrm{~mm}$), it will click fit into panel with the four integral retention clips on two sides of meter.
If required Additional support is provided with swivel screws (optional) as shown in figure.

As the front of the enclosure conforms to IP 54 with the use of the supplied panel gasket. The terminals at the rear of the product should be protected from liquids.

The DGU V/A should be mounted in a reasonably stable ambient temperature and where the operating temperature is within the range 0 to $50^{\circ} \mathrm{C}$. Vibration should be kept to a minimum and the product should not be mounted where it will be subjected to excessive direct sunlight.

Caution

1. In the interest of safety and functionality this product must be installed by a qualified engineer, abiding by any local regulations.
2. Voltages dangerous to human life are present at some of the terminal connections of this unit. Ensure that all supplies are de-energised before attempting any connection disconnection.
3. These products do not have internal fuses therefore external fuses must be used to ensure safety under fault conditions.

4.1 EMC Installation Requirements

This product has been designed to meet the certification of the EU directives when installed to a good code of practice for EMC in industrial environments, e.g.

1. Screened output and low signal input leads or have provision for fitting RF suppression components, such as ferrite absorbers, line filters etc., in the event that RF fields cause problems.
Note: It is good practice to install sensitive electronic instruments that are performing critical functions, in EMC enclosures that protect against electrical interference which could cause a disturbance in function.
2. Avoid routing leads alongside cables and products that are, or could be, a source of interference.
3. To protect the product against permanent damage, surge transients must be limited to 2 kV pk. It is good EMC practice to suppress differential surges to 2 kV at the source. The unit has been designed to automatically recover in the event of a high level of transients. In extreme circumstances it may be necessary to temporarily disconnect the auxiliary supply for a period of greater than 5 seconds to restore correct operation.
4. ESD precautions must be taken at all times when handling this product.

4.2 Case Dimensions and Panel Cut Out

4.2.1 for 96X96 models

4.2.2 for 48 X 96 models

4.3 Wiring

Input connections are made directly to screw-type terminals with indirect wire pressure.
Numbering is clearly marked on the connector. Choice of cable should meet local regulations.
Terminal for inputs will accept up to $4 \mathrm{~mm}^{2}\left(12 \mathrm{AWG}\right.$) or $2.5 \mathrm{~mm}^{2}$ (12AWG)Standard
Note : 1) It is recommended to use wire with lug for connection with meter.
2) For disconnecting the device a switch or circuit-breaker shall be included at the site and shall be within easy reach of the operator. The specification are as below.
For aux. $=$ At least 1.5 times of applied Power supply.
For Measuring Input = At least 1.5 times of applied measuring inputs.

4.4 Auxiliary Supply

DGUshould ideally be powered from a dedicated supply, however it may be powered from the signal source, provided the source remains within the limits of the chosen auxiliary voltage.

4.5 Fusing

It is recommended that all voltage lines are fitted with 1 amp HRC fuse.

4.6 Earth/Ground Connections

For safety reasons, panels and accesoriess should be grounded in accordance

5. Connection Diagrams

5.1 For 96x96 DPM

Connections for DGU 3 V $96 \times 96 \mathrm{~mm}$

Connections for DGU 3A 96X96

14

Connections For DGU 1V 96X96
Connections For DGU 1A 96X96

5.2 For 48x96 DPM

Connections for DGU $3 V 48 \times 96 \mathrm{~mm}$

3-PHASE 3-WIRE UNBALANCED LOAD DIGITAL METERING SYSTEM (WITH EXTERNAL AUX.)

Connections for DGU 3A $48 \times 96 \mathrm{~mm}$

3-PHASE 3-WIRE UNBALANCED LOAD DIGITAL PANEL METER (External Aux.)

Connections For DGU 1V $48 \times 96 \mathrm{~mm}$ Connections For DGU 1A $48 \times 96 \mathrm{~mm}$

Operating Measuring Ranges

Voltage Range	$10 \ldots 120 \%$ of Rated Value
Current Range	$10 \ldots 120 \%$ of Rated Value (optional 150\%)
Frequency	$45 \ldots 65 \mathrm{~Hz}$

Reference conditions for Accuracy :

Reference temperature
Input waveform
Auxiliary supply voltage
Auxiliary supply frequency
Input Frequency
Voltage Range
Current Range

$$
23{ }^{\circ} \mathrm{C} \pm 2{ }^{\circ} \mathrm{C}
$$

Sinusoidal (distortion factor 0.005)
Rated Value $\pm 1 \%$
Rated Value $\pm 1 \%$
$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
20... 100% of Nominal Value
$10 . .100 \%$ of Nominal Value

Accuracy

Voltage ($3 \mathrm{~V} / \mathrm{1V}$)
$\pm 0.5 \%$ of Nominal value.
Current (3A/1A)
$\pm 0.5 \%$ of Nominal value.
Measurement error is normally much less than errors specified in the above. Variation due to influence quantity is less than twice the error allowed for reference condition.

Temperature Coefficient

Voltage	$0.025 \% /{ }^{\circ} \mathrm{C}$
Current	$0.05 \% /{ }^{\circ} \mathrm{C}$

(For Rated value range of use $0 . . .50^{\circ} \mathrm{C}$)

Display

LED
Digit height

1 line 4 digits .
14 mm
6. Specifications :Input voltage (3V/1V) :Nominal Input Voltage Ranges

Max continuous input voltage Nominal input voltage burden

System PT Primary values
Input current (3A/1A) :
Nominal Input Current Ranges
System CT Primary values
Max continuous input current
Nominal input current burden
Overload Indication :
Auxiliary Supply :
AC-DC Auxiliary Supply
Frequency Range for AC Aux. Supply
VA Burden

Overload Withstand :

Voltage
Current

Line - Neutral	Line - Line
$57 \mathrm{~V}-300 \mathrm{~V} \mathrm{L-N}$	$100 \mathrm{~V}-500 \mathrm{~V}$ L-L
$600 \mathrm{~V} \mathrm{L-N}$ (Applicable for single phase only)	

120\% of rated value
<0.3VA approx. per phase
<0.4 VA approx. per phase (for 600VLN)
3 V: 100VL-L to 999kV L-L Programmable onsite V: $57.5 \mathrm{VL}-\mathrm{N}$ to 999 kV L-N Programmable onsite

1A and 5AAC RMS

1A to 999kA Programmable onsite
120% of rated value (Optional 150% of rated value)
<0.2VA approx. per phase
"-oL-"
(If input is greater than 125% of secondary value.) (optional 155% of secondary for current input)

40 V to 300 V AC/DC (+/- 5\%) 20 V to 40 V AC $/ 20 \mathrm{~V}$ to 60 V DC 45 to 65 Hz $<3 \mathrm{VA}$ at $240 \mathrm{~V}, 50 \mathrm{~Hz}$.
$2 \times$ Rated Value for 1 Second, repeated 10 times at 10 second interval.

4 X Rated Value for 1 Second, repeated 5 times at 5 min interval.

Applicable Standards

EMCSafetyIP for water \& dust
IEC 61326-1:2005$10 \mathrm{~V} / \mathrm{m}$ min-Level 3 industrial low levelElectromagnetic radiation environment
IEC 61010-1: 2001,Permantly Connected useIEC 60529
Safety
Pollution DegreeInstallation CategoryHigh Voltage Test
Environmental conditions
Operating temperature 0 to $50^{\circ} \mathrm{C}$Storage temperature-25 to $70^{\circ} \mathrm{C}$Relative humidityWarm up timeShockVibration
0 .. 90% (Non condensing)
Minimum 3 minute
15 g in 3 planes
10 .. $55 \mathrm{~Hz}, 0.15 \mathrm{~mm}$ amplitude
Enclosure
Front IP54
Back IP20
Material
Terminals
Polycarbonate Housing
Screw-type terminals

Dimension and weight:

	96×96 models	48×96 models
Bezel Size (DIN 43718)	$96 \mathrm{~mm} \times 96 \mathrm{~mm}$ (DIN 43718)	$48 \mathrm{~mm} \times 96 \mathrm{~mm}$
Panel Cut-Out	$92+0.8 \mathrm{~mm} \times 92+0.8 \mathrm{~mm}$	$43.5+0.6 \mathrm{~mm} \times 92+0.8 \mathrm{~mm}$
Overall Depth	40 mm	68 mm
Weight	310 g Approx.	250 g Approx.

The Information contained in these installation instructions is for use only by installers trained to make electrical power installations and is intended to describe the correct method of installation for this product. However, Manufacturer has no control over the field condition which influence product installation.
It is the user's responsibility to determine the suitability of the installation method in the user's field conditions. Manufacturer only obligations are those in Manufacturer standard Conditions of Sale for this product and in no case will Manufacturer be liable for any other Incidental, indirect or consequential damages arising from the use or misuse of the products.

20

